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Abstract In this paper, we consider the problem of finding a minimum common partition of two strings. The
problem has its application in Genome Comparison. As it is an NP-hard, discrete combinatorial optimization
problem, we employ a metaheuristic technique, namely, MAX-MIN ant system to solve this problem. To achieve
better efficiency we first map the problem instance into a special kind of graph. Subsequently, we employ a MAX—
MIN ant system to achieve high quality solutions for the problem. Experimental results show the superiority of our
algorithm in comparison with the state of art algorithms in the literature. The improvement achieved is also justified
by a standard statistical test.
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1 Introduction

String comparison is one of the important problems in Computer Science with diverse applications in different
areas including Genome Sequencing, text processing and data compression. In this paper, we address the problem
of finding a minimum common partition (MCSP) of two strings. MCSP is closely related to genome arrangement
which is an important topic in Computational Biology. Given two DNA sequences, the MCSP asks for the smallest
set of the common building blocks of the sequences.

Our goal is to partition each string into ¢ segments called blocks, so that the blocks in the partition of X and
that of Y constitute the same multiset of substrings. The cardinality of the partition set, i.e., ¢ is to be minimized.
Formally, a partition of a string X is a sequence P = (B, B3, ..., B,,) of strings whose concatenation is equal
to X, thatis B; B> ... B, = X. The strings B; are called the blocks of P. Given a partition P of a string X and a
partition Q of a string Y, we say that the pair 7 = (P, Q) is a common partition of X and Y if Q is a permutation
of P. The minimum common string partition problem, i.e., MCSP problem, is to find a common partition of X, ¥
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with the minimum number of blocks. For example, if (X, Y) = {“ababcab”, “abcabab”}, then one of the minimum
common partition sets is 7 ={*“ab”,“abc”,“ab” } and the minimum common partition size is 3. The restricted version
of MCSP where each letter occurs at most k times in each input string, is denoted by k-MCSP. Note that, in the
MCSP problem, we consider two related strings (X, Y). Two strings are related if every letter appears the same
number of times in each of them. Clearly, two strings have a common partition if and only if they are related. So,
the lengths of the two strings are also the same (say, n).

MCSP has applications in Comparative Genomics. Given two DNA strings, MCSP answers the possibilities
of re-arrangement of one DNA string to another [7]. MCSP is also important in ortholog assignment. In [5],
Chen et al. present a new approach to ortholog assignment that takes into account both sequence similarity and
evolutionary events at a genomic level. In that approach, first, the problem is formulated as that of computing the
signed reversal distance with duplicates between the two genomes of interest. Then, the problem is decomposed
into two optimization problems, namely minimum common partition and maximum cycle decomposition problem.
Thus MCSP plays an integral part in computing ortholog assignment of genes.

1.1 Our Contribution

In this paper, we consider metaheuristic approaches to solve the problem. Particularly we are interested in nature
inspired algorithms. As the problem is discrete combinatorial optimization problem, the natural choice is Ant Colony
Optimization (ACO). Before applying ACO, it is necessary to map the problem into a graph. We have developed
this mapping. In this paper, we implement a variant of ACO algorithm namely MAX-MIN Ant System (MMAS)
to solve the MCSP problem. We conduct experiments on both random and real data to compare our algorithm with
the state of the art algorithms in the literature and achieve excellent results. Notably, a preliminary version of the
paper appeared at [16].

2 Literature Review

MCSP is essentially the breakpoint distance problem [27] between two permutations which is to count the number
of ordered pairs of symbols that are adjacent in the first string but not in the other; this problem is obviously solvable
in polynomial time [19]. The 2-MCSP is proved to be NP-hard and moreover APX-hard in [19]. The authors in [19]
also presented several approximation algorithms. Chen et al. [5] studied the problem, Signed Reversal Distance with
Duplicates (SRDD), which is a generalization of MCSP. They gave a 1.5-approximation algorithm for 2-MCSP.
In [7], the author analyzed the fixed-parameter tractability of MCSP considering different parameters. In [20], the
authors investigated k-MCSP along with two other variants: M C S P€, where the alphabet size is at most ¢; and
x-balanced MCSP, which requires that the length of the blocks must be within the range (n/d — x, n/d 4 x), where
d is the number of blocks in the optimal common partition and x is a constant integer. They showed that M C S P¢
is NP-hard when ¢ > 2. As for k-MCSP, they presented an FPT algorithm which runs in O*((d !)2]‘ ) time.

Chrobak et al. [6] analyzed a natural greedy heuristic for MCSP: iteratively, at each step, it extracts a longest
common substring from the input strings. They showed that for 2-MCSP, the approximation ratio (for the greedy
heuristic) is exactly 3. They also proved that for 4-MCSP the ratio would be log n and for the general MCSP, between
Q(n%*) and 0 (n°97).

Ant Colony Optimization (ACO) [10,11,13] was introduced by Dorigo and colleagues as a nature-inspired
metaheuristic for the solution of hard Combinatorial Optimization (CO) problems. The inspiring source of ACO is
the pheromone trail laying and following behavior of real ants which use pheromones as a communication medium.
In analogy to the biological example, ACO is based on the indirect communication of a colony of simple agents,
called (artificial) ants, mediated by (artificial) pheromone trails. The pheromone trails in ACO serve as a distributed,
numerical information which the ants use to probabilistically construct solutions to the problem being solved and
which the ants adapt during the algorithm’s execution to reflect their search experience.
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Different ACO algorithms have been proposed in the literature. The original algorithm is known as the Ant
System (AS) [8,9,12]. The other variants are Elitist AS [8,12], ANT-Q [18], Ant Colony System (ACS) [11],
MAX-MIN AS [23-25] etc.

Recently growing interest has been noticed towards ACO in the scientific community. There are now available
several successful implementations of the ACO metaheuristic applied to a number of different discrete combinatorial
optimization problems. In [10] the authors distinguished among two classes of applications of ACO: those to static
combinatorial optimization problems, and those to the dynamic ones. Static combinatorial optimization problems
are those in which the problem does not change while it is being solved. The authors list some static combinatorial
optimization problems that are successfully solved by different variants of ACO. Some of the problems are, travelling
salesperson, Quadratic Assignment, job-shop scheduling, vehicle routing, sequential ordering, graph coloring, etc.
Dynamic problems are defined as a function of some quantities whose values are set by the dynamics of an underlying
system. The problem changes therefore at run time and the optimization algorithm must be capable of adapting
online to the changing environment. The authors listed connection-oriented network routing and connectionless
network routing as the examples of dynamic problems those are successfully solved by ACO.

The survey [14] presents a non-exhaustive list of applications of ACO algorithms grouped by problem types. The
authors categorized the problems into different types namely routing, assignment, scheduling, subset machine learn-
ing and bioinformatics. In each type they listed the problems that are successfully solved by some variants of ACO.

There are not too many string related problems solved by ACO in the literature. In [4], the authors addressed the
reconstruction of DNA sequences from DNA fragments by ACO. Several ACO algorithms have been proposed for the
longest common subsequence (LCS) problemin [1,21]. Recently minimum string cover problemis solved by ACO in
[15]. Finally, we note that to the best of our knowledge, there were no attempt to solve this problem with metaheuristic
approaches in the literature when this research work was conducted. However, during the rather long submission pro-
cess of the current manuscript, afew works (e.g., [2,3]) have been reported in the literature inspired by our preliminary
work presented at [16]. A follow up work of the current authors have also been published in [17] during this period.

3 Preliminaries

In this section, we present some definitions and notations that are used throughout the paper.

Definition 1 Related string: Two strings (X, Y), each of length n, over an alphabet ) are called related if every
letter appears the same number of times in each of them.

Example 1 X = “abacbd” and Y = “acbbad”, then they are related. But if X| = “acacbd” and Y = “acbbad”, they
are not related.

Definition 2 Block: Ablock B = ([id, i, j]),0 <i < j < n,of astring S is a data structure having three fields: id
is an identifier of S and the starting and ending positions of the block in § are represented by i and j, respectively.
Naturally, the length of a block [id, i, j]is (j — i + 1). We use substring([id, i, j]) to denote the substring of
S induced by the block [id, i, j]. Throughout we will use 0 and 1 as the identifiers of X(i.e., id(X)) and Y (i.e.,
id(Y)) respectively. We use [] to denote an empty block.

Example 2 If we have two strings (X, Y) = {“abcdab”,“bedaba”}, then [0, O, 1] and [0, 4, 5] both represent the
substring “ab” of X. In other words, substring([0, 0, 1]) = substring([0, 4, 5]) = “ab”.

Two blocks can be intersected or unioned. The intersection of two blocks (with same ids) is a block that contains
the common portion of the two.

Definition 3 Intersection of blocks: Formally, the intersection operation of By = [id, i, j] and B, = [id,i’, j']is
defined as follows:

[] ifi’> jori>j
BiNBy =4 [id,i’, j] ifi’ <] (1)
[id, i, j'1 else.
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Example 3 1If, By = [0, 1, 5] and B, = [0, 3, 6], then By N B = [0, 3, 5]. On the other hand, if B; = [0, 1, 5] and
B, =0, 6, 8], then B; N By = [].

Definition 4 Union of blocks: The union of two blocks (with the same ids) is either another block or an ordered
(based on the starting position) set of blocks. Without loss of generality we suppose that i < i’ for By = [id, i, j]
and By = [id, i’, j']. Then, formally the union operation of By and B is defined as follows:

lid,i, j1 ifj <j
BiUBy, =1 [id,i,j'] ifj > jori’=j+1 )
{B1, B} else.

Example 4 1f, By = [0, 1, 5] and B, = [0, 3, 6], then B; U B, = [0, 1, 6]. On the other hand, if B; = [0, 1, 5] and
B> = [0, 6, 8], then B; U B, = {[0, 1, 5], [0, 6, 8]}.

The union rule with an ordered set of blocks, Bj; and a block, B’ can be defined as follows. We have to find
the position where B’ can be placed in Byy;, i.e., we have to find By € By after which B’ can be placed. Then, we
have to replace the ordered subset { By, Bg+1} with By U B’ U By 1.

Example 5 As an example, suppose we have three blocks, namely, By = [0,5,7],B, = [0, 11,12] and
B3 = [0,8, 10]. Then B; U By = Bl/st = {[0,5,7],[0, 11, 12]}. On the other hand, Bl’st U B3 = [0, 5, 12],
which is basically identical to By U B, U B3.

Two blocks By and B; (in the same string or in two different strings) match if substring(B1) = substring(B>).
If the two matched blocks are in two different strings then the matched substring is called a common substring of
the two strings denoted by cstring(B1, B>).

Definition 5 Span: Given a list of blocks with the same id, the span of a block, B = [id, i, j] in the list denoted
by span(B) is the length of the block (also in the list) that contains B and whose length is maximum over all
such blocks in the list. Note that a block is assumed to contain itself. More formally, given a list of blocks, listp,
span(B € listy) = max{{ | £ = length(B'), B C B’,VB' € list}}.

Example 6 Iflist, = {[0, 0, 0], [0, 0, 11, [0, 0, 2], [0, 4, 5]} then span([0, 0, 0]) =span([0, 0, 1]) =span([0, 0, 2])
= 3 where as, span([0, 4, 5]) = 2. In other words, span of a block is the maximum length of the super string than
contains the substring induced by the block.

Definition 6 Partition: A partition of a string X is alist of blocks all with id (X) having the following two properties:

(a) Non overlapping: The blocks must be disjoint, i.e., no block should overlap with another block. So the inter-
section of any two blocks must be empty.
(b) Cover: The blocks must cover the whole string.

In other words, a partition of a string X is a sequence P = (B, Ba, ..., B,,) of strings whose concatenation is
equal to X, thatis B;B; ... B, = X, where B;’s are blocks.

3.1 Basics of ACO

In ACO, a Combinatorial Optimization (CO) problem is solved by iterating the following two steps. At first, solu-
tions are constructed using a parameterized probability distribution over the solution space which is called the
pheromone model. The second step is to modify the pheromone values using the solutions that were constructed in
earlier iterations in a way that is deemed to bias the search towards the high quality solutions.
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3.2 Ant Based Solutions Construction

The basic ingredient of an ACO algorithm is a constructive heuristic that constructs solutions probabilistically.
Sequences of solution components taken from a finite set of solution components C = {cy, ¢2, ..., ¢, } is assembled
by a constructive heuristic. Starting with an empty partial solution s” = J a solution is constructed. Then at each
construction step the current partial solution s” is extended by adding a feasible solution component from the solution
space C. The definition of the feasible solution component is problem specific. Typically a problem is mapped into
a construction Graph G, = (C, E) whose vertices are the solution components C and the set E are the connections
(i.e., edges). The process of constructing solutions can be regarded as a walk (or a path) on the construction graph.

3.3 Heuristic Information

In most ACO algorithms the transition probabilities, i.e., the probabilities for choosing the next solution component,
are defined as follows:

7% - n(ci)?

, Vei € N(sP) 3)
Zc_ieN(xl’) T T](Cj)ﬂ l

p (cils?) =

Here, ¢; is a candidate component and s? is the partial solution. The current partial solution s” is extended by
adding a feasible solution component from the set of feasible neighbors N (s”) C C, n is a weight function that
contains heuristic information and o, B are positive parameters whose values determine the relation between the
pheromone information and the heuristic information. The pheromone deployed by the ants are denoted by t.

3.4 Pheromone Update

The pheromone update consists of two parts. The first part is pheromone evaporation, which uniformly decreases
all the pheromone values. From a practical point of view, pheromone evaporation prevents too rapid convergence
of the algorithm toward a sub-optimal region. Thus it helps to avoid the local optimal solutions and favors the
exploration of new areas in the search space. Then, one or more solutions from the current or from earlier iterations
(the set is denoted by S,4) are used to increase the values of pheromone trail parameters on solution components
that are part of these solutions:

i< (1—¢)x1+ex Z F(s),i=1,2,...,n. (@]

SESupdlci€s

Let W (.) be the cost function. In Eq. 4, S,,4 is the set of local best or global best solution, & € (0, 1]is a parameter
called the evaporation rate,and F : G — R* isafunctionsuchthat W(s) < W(s) = F(s) > F(5),s #5§,V¥s € G.
The function F(.) is commonly called the Fitness Function.

In general, different versions of ACO algorithms differ in the way they update the pheromone values. This also
holds for the two currently best-performing ACO variants in practice, namely, the Ant Colony System (ACS) [11]
and the MAX-MIN Ant System (MMAS) [25]. Since in our algorithm we hybridize ACS with MMAS, below we
give a brief description of MMAS.

3.5 MAX-MIN Ant System (MMAS)

MMAS algorithms are characterized as follows. First, the pheromone values are limited to an interval [Tas7n, Ty ax]
with 0 < Ty7y < tyax. Pheromone trails are initialized to 7,,,, to favor the diversification during the early iter-
ations so that premature convergence is prevented. Explicit limits on the pheromone values ensure that the chance
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of finding a global optimum never becomes zero. Second, in case the algorithm detects that the search is too much
confined to a certain area in the search space, a restart is performed. This is done by initializing all the pheromone
values again. Third, the pheromone update is always performed with either the iteration-best solution, the restart-best
solution (i.e., the best solution found since the last restart was performed), or the best-so-far solution.

4 Our Approach: MAX-MIN Ant System on the Common Substring Graph
4.1 Formulation of Common Substring Graph

We define a common substring graph, G.s(V, E, id(X)) of a string X with respect to Y as follows. Here V is
the vertex set of the graph and E is the edge set. Vertices are the positions of string X, i.e., for each v € V,
v € [0, |X]| — 1]. Two vertices v; < v; are connected with an edge, i.e., (v;, v;) € E, if the substring induced by
the block [id(X), v;, vj] matches some substring of Y. More formally, we have:

(vi,vj) € E & cstring([id(X), vi, vj), B') is not empty, 3B €Y

In other words, each edge in the edge set corresponds to a block satisfying the above condition. For convenience,
we will denote the edges as edge blocks and use the list of edge blocks (instead of edges) to define the edgeset
E. Notably, each edge block on the edge set of G.;(V, E, id(X)) of string (X, Y) may match with more than one
blocks of Y. For each edge block B alist is maintained containing all the matched blocks of string Y to that edge
block. This list is called the matchList (B).

For example, suppose (X, Y) = {“abad”,”adab”}. Now consider the corresponding common substring graph,
G (V, E,id(X)). Then, we have V = {0, 1,2,3} and E = {[0, 0, 0], [0, O, 1], [0, 1, 11, [0, 2, 2], [0, 2, 3]}. The
construction steps are shown in Fig. 1.

To find a common partition of two strings (X, Y) we first construct the common substring graph of (X, Y).
Then from a vertex v; on the graph we take an edge block [id (X), v;, v;]. Suppose M; is the matchList of this
block. We take a block Bl-/ from M;. Then we advance to the next vertex that is (v; + 1) M OD |X| and choose

(X,Y) = ("abad","adab")

@B OO OO 6D

(X,Y) = ("abad","adab") (X,Y) = ("abad","adab’) (X,Y) = ("abad","adab”)
(a) (b) (c)

@ @ ® ® © © 06
(X,Y) = (“abad”,"adab") (X,Y) = ("abad","adab")
(d) (e)

Fig. 1 Construction of G.;(V, E, id(X)) of (X, Y). a Vertex 0 is connected with itself because “a” is common string of X and Y. b
An edge exists between vertices 0 and 1 as “ab” is a common string of X and Y. ¢ Vertex 1 is connected with itself. d Vertex 1 and
vertex 2 are connected with vertex 0 and vertex 3, respectively. e Vertex 3 is connected with itself
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another corresponding edge block as before. We continue this process until we come back to the starting vertex.
Let partitionList and mapped List are two lists, each of length ¢, containing the traversed edge blocks and the
corresponding matched blocks. Now we have the following lemma.

Lemma 1 partitionList is a common partition of length c if, and only if we have the following:

BiNB; =[] VB;, Bj € mappedList, i # j )
and
BiUByU.--UB, =[id(Y),0,|Y]| —1]. ©

Proof By construction, partitionList is a partition of X. We need to prove that mapped List is a partition of Y
and with the one to one correspondence between partitionList and mapped List it is obvious that partitionList
would be the common partition of (X, Y). Equation 5 asserts the non overlapping property of mappedList and
Eq. 6 assures the cover property. So, mapped List will be a partition of Y if Egs. 5 and 6 are satisfied.

On the other hand, let partitionList along with mapped List be a common partition of (X, Y). According to
construction, partitionList satisfies the two properties of a partition. Let, mapped List be a partition of Y. We
assume mappedList does not follow the Eqs. 5 or 6. So, there might be overlapping between the blocks or the
blocks do not cover the string Y, a contradiction. This completes the proof. O

4.2 Heuristics

Heuristics (1) contain the problem specific information. We propose two different (types of) heuristics for MCSP.
Firstly, we propose a static heuristic that does not change during the runs of algorithm. The other heuristic we
propose is dynamic in the sense that it changes between the runs.

4.2.1 The Static Heuristic for MCSP

We employ an intuitive idea. It is obvious that the larger is the size of the blocks the smaller is the partition set.
To capture this phenomenon, we assign to each edge of the common substring graph a numerical value that is
proportional to the length of the substring corresponding to the edge block. Formally, the static heuristic (7)5) of an
edge block [id, i, j] is defined as follows:

ns(lid, i, j1) oclength(lid. i, j]). )

4.2.2 The Dynamic Heuristic for MCSP

We observe that the static heuristic can sometimes lead us to very bad solutions. For example if (X, Y) = {“bce-
abcd”,“abedbec”} then according to the static heuristic much higher value will be assigned to edge block [0, 0, 1]
thanto [0, 0, O]. Butif we take [0, O, 1], we must match it to the block [1, 1, 2] and we further miss the opportunity to
take [0, 3, 6] later. The resultant partition will be {“bc”,“e”,*“a”,“b”,“c”,*“d”} but if we would take [0, 0, O] at the first
step, then one of the resultant partitions would be {*b”,“c”,“e”,“abcd”}. To overcome this shortcoming of the static
heuristic we define a dynamic heuristic as follows. The dynamic heuristic (14) of an edge block (B = [id, i, j]) is
inversely proportional to the difference between the length of the block and the minimum span of its corresponding
blocks in its matchList. More formally, 14 (B) is defined as follows:
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1
B , 8
nd(B) o (B — minSpan(B)| + 1 ®)
where
minSpan(B) = min{span(B’) | B’ € matchList(B)}. 9)

In the example, minSpan([0, 0, 0]) is 1 as follows: matchList ([0, 0,0]) = {[1, 1, 1], [1, 4, 4]}, span([1, 1, 1])
= 4 and span([1, 4, 4] = 1). On the other hand, minSpan({[0, 0, 1]) is 4. So, according to the dynamic heuristic
much higher numeral will be assigned to block [0, 0, 0] rather than to block [0, 0, 1].

We define the total heuristic (1) to the linear combination of the static heuristic (1) and the dynamic heuristic
(n4). Formally, the total heuristic of an edge block B is

n(B) =a-ns(B)+b-n4(B) (10)

where a, b are real valued constants. The algorithms of static and dynamic heuristics are shown in Algorithm (1-2)

Algorithm 1 addDynamicHeuristic(Gy)
E < edge blocks of E
for all Block B in E do
minspan < find minimum free span of B by Eq. 9
dynamicHeuristic(E) =
end for

(length(E)—minspan+1)

Algorithm 2 addStaticHeuristic(G .4)

E <« edge blocks of G
max < maximum length edgeblock of G
for all Block B in E do
staticHeuristic(B) = length(B)/max
end for

Algorithm 3 addHeuristic(Gs,a,b)

E < edge blocks of G
addStaticHeuristic(G )
addDynamicHeuristic(G )
for all Block B in E do
heuristic(B) < a - staticHeuristic(B) + b - dynamicHeuristic(B)
end for

4.3 Initialization and Configuration

Given two strings (X, Y), we first construct the common substring graph G,y = (V, E, id(X)). We use the fol-
lowing notations. Local best solution (L ) is the best solution found in each iteration. Global best solution (L p)
is the best solution found so far among all iterations. The pheromone of the edge block is bounded between 7,4
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1 and T, — Tmax (1— Y/ Pbest)
e-cost(Lgp)’ min-=— (avg—1) ¥/ ppes: *
Here, avg is the average number of choices an ant has in the construction phase; 7 is the length of the string; ppes;

is the probability of finding the best solution when the system converges and ¢ is the evaporation rate. Initially, the
pheromone values of all edge blocks (substring) are initialized to init Pheromone which is a large value to favor
the exploration at the first iteration [25]. The steps of the initialization is shown in Algorithm 4.

and t,,;,,. Like [25], we use the following values for 7,4, and T,in: Tpax =

Algorithm 4 initialize(G )

initialize L g

initialize Lgp

set Parameters

E <« edge blocks of G

for all Block B in E do

pheromone(B) <— init Pheromone

end for

4.4 Construction of a Solution

Let, nAnts denote the total number of ants in the colony. Each ant is deployed randomly to a vertex vs of G5. A
solution for an ant starting at a vertex vy is constructed by the following steps:

Step 1: Let v; = v;. Choose an available edge block starting from v; by the discrete probability distribution defined
below. An edge block is available if its MatchList is not empty and inclusion of it to the partitionList and
mappedList obeys Eq. 11. The probability for choosing edge block [0, v;, v;] is:

([0, vi, v;D* - ([0, vi, v; )P
Z[ T([Ov Vi, Uz])a : 77([0, Vi, v@])ﬂ '

p([0,v;, v;]) = V¢ such that[0, v;, v;] is an available block. (11

Step 2: Suppose, [0, v;, vi] is chosen according to Eq. 11 above. We choose a match block B, from the matchList
of [0, v;, vx] and delete B, from the matchList. We also delete every block from every matchList of every edge
block that overlaps with B,,. Formally we delete a block B if

BnNB#I[] VB; € E,B € matchList(B;).

We add [0, v;, vi] to the partitionList and B, to the mappedList.

Step 3: If (v + 1) MOD length(X) = vy and the mapped List obeys Eq. 6, then we have found a common
partition of X and Y. The size of the partition is the length of the partitionList. Otherwise, we jump to the step I.
The construction is shown in Algorithm 5.

4.5 Intelligent Positioning

For every edge block of G, in X, we have amatch List that contains the matched block of string Y. In construction
(step 1), when an edge block is chosen by the probability distribution, we take a block from the marchList of the
chosen edge block. We can choose the matched block randomly. But we observe that random choosing may lead to a
very bad partition. For example, if (X, Y)) = {“ababc”,*“abcab”} then the march List ([0, 0, 1]) = {[1, 0, 1], [1, 3, 4]}.
If we choose the first match block then eventually we will get the partition as {““ab”,““ab”,“c”’} but a smaller partition
exists and that is {““ab”,“abc”}.

To overcome this problem, we have imposed a rule for choosing the matched block. We will select a block from
the matchList having the lowest possible span. Formally, for the edge block, B;, a block B’ € matchList(B;)
will be selected such that span(B’) is the minimum.
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Algorithm 5 constructSolution(i,G )

blockList = empty list of blocks
mappedList = empty list of blocks
startpos = |n/m] % i
k = startpos
repeat
addHeuristics(G .s,a,b)
constructPDF(k,G ) using Eq. 11
B = choose an edge block from PDF
M = choose a match block from matchList(B) {I}ntelligent Positioning
Update matchList(B)
add B to blockList
add M to the mapped List
k=Bj+1
until k # startpos

In our example span([1, 0, 1]) = 3 where as span([1, 3, 4]) = 2. So it is better to select the second block so
that we do not miss the opportunity to match a larger block.

4.6 Pheromone Update

When each of the ants in the colony construct a solution (i.e., a common partition), an iteration completes. We
set the local best solution as the best partition that is the minimum length partition in an iteration. The global best
solution for # iterations is defined as the minimum length common partition over all the » iterations.

We define the fitness F(L) of a solution L as the reciprocal of the length of L. The pheromone of each interval
of each target string is computed according to Eq. 4 after each iteration. The pheromone values are bounded within
the range )7y and Ty 4x. We update the pheromone values according to Ly g or Lgp. Initially for the first 50
iterations we update pheromone by only L p to favor the search exploration. After that we develop a scheduling
where the frequency of updating with L p decreases and L p increases to facilitate exploitation. The pheromone
update algorithm is listed in Algorithm 6.

4.7 The Pseudocode

The pseudocode of our approach for solving MCSP is given in Algorithm 7.

5 Experiments
We have conducted our experiments in a computer with Intel Core 2 Quad CPU 2.33 GHz. The available RAM was

4 GB. The operating system was Windows 7. The programming environment was Java. jre version is “1.7.0_15".
In our main experiments, the maximum allowed time for test case instances was set to 120 min.

5.1 Datasets

We have conducted our experiments on two types of data: randomly generated DNA sequences and real gene
sequences.
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Algorithm 6 updatePheromoneSchedule(iterationCounter,G.5,L15,LGB)

E <« edge blocks of G
decreasePheromone(E)
if iterationCounter < 50 then
increasePheromone(L )
else if iterationCounter < 100 then
if iterationCounter M O D5 == 0 then
increasePheromone(L p)
else
increasePheromone(Lgp)
end if
else if iterationCounter < 200 then
if iterationCounter M O D4 == 0 then
increasePheromone(L 7 p)
else
increasePheromone(L g p)
end if
else if iterationCounter < 400 then
if iterationCounter M O D3 == 0 then
increasePheromone(L p)
else
increasePheromone(L g p)
end if
else if iterationCounter < 800 then
if iterationCounter M O D2 == 0 then
increasePheromone(L p)
else
increasePheromone(Lgp)
end if
else
increasePheromone(L )
end if
Update tau;,qx and tau,y,
for all Block B in E do
Bound pheromone(B) between taut;; 4, and taum;,
end for

Algorithm 7 MMAS(X,Y)

h!
G5 < construct common substring graph of string X and Y
for run =1 — nRun do
initialize(G.s)
interationCounter = 0
repeat
iterationCounter = iterationCounter + 1;
Initialize local best
fori =1 — nAnts do
constructSolution(i,G 5)
update localBest (L p)
end for
update globalBest (Lgp)
updatePheromoneSchedule(iterationCounter,G . )
until time reaches max AllowedT ime or No update found for max AllowedIteration
end for
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Table 1 List of parameters

Name Symbol Value set
Pheromone information o {1,2,3}
Heuristic information B {3,5,10}
Evaporation rate £ {0.02,0.04,.05}
Number of ants nAnts {20,60,100}
Probability of best solution Dbest {0.005,0.05,0.5}

The first column represents the name, the second column represents the symbol of the parameter and the third column represent the set
of values used for tuning

Table 2 Best found values of the parameters

Parameters Value

o 2.0

B 10.0
Evaporation rate, & 0.05
nAnts 100
Phbest 0.05
initPheromone 10.0
Maximum allowed time 120 min

The first column is the symbol of the parameter and the second column is the best found value

5.1.1 Random DNA Sequences

We have generated 30 random DNA sequences each of length at most 600 using [22]. The fraction of bases A, T, G
and C is assumed to be 0.25 each. For each DNA sequence we shuffle it to create a new DNA sequence. The shuffling
is done using the online toolbox [26]. The original random DNA sequence and its shuffled pair constitute a single
input (X, Y) in our experiment. This dataset is divided into 3 classes. The first 10 have lengths within [100-200]
bps (base-pairs), the next 10 have lengths within [201, 400] and the rest 10 have lengths within [401, 600] bps.

5.1.2 Real Gene Sequences

We have collected the real gene sequence data from the NCBI GenBank.! For simulation, we have chosen Bacterial
Sequencing (part 14). We have taken the first 15 gene sequences whose lengths are within [200, 600].

5.2 Parameter Tuning

There are several parameters which have to be carefully set to obtain good results. To obtain a good set of parameters
we have done a preliminary experiment. In our experiment we have chosen 3 values for each of the parameters. so
there are 243 possible permutations of the 5 parameters. The values of the parameters used in our experiment is
listed in Table 1. We have chosen 2 input cases from each of the groups (groupl, group2, group3 and realgene). The
time limits are set to 10, 20, 30 and 20 min for the 4 groups, respectively. The algorithm is run for 4 times and the
average result is recorded. Let the partition size of each of the case is denoted by A’ where i € [1, 8]. With these
settings, we find rank of a permutation by the following rule:
R; = Z Al /max(A') Vjell,243]
i€[l,8

After[coinputing the Rank, R, we find the permutation of the parameters for which the rank is minimum. The

best found parameters are reported in Table 2.

! http://www.ncbi.nlm.nih.gov.
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Table 3 Comparison between Greedy approach [6] and MMAS on random DNA sequences (Group 1, [100-200] bps)

Greedy MMAS(Avg.) Worst Best Difference SD (MMAS) Time (s) (MMAS) tstat p value  Significance
46 42.8667 43 42 —3.1333 0.3519 114.6243 344886 0.0000 +
56 51.8667 52 51 —4.1333 0.5164 100.823 31 0.0000 +
62 57 58 55 -5 0.6547 207.5253 29.5804 0.0000 +
46 43.3333 43 43 —2.6667 0.488 168.3098 21.166 0.0000 +
44 42.9333 43 43 —1.0667 0.2582 42.7058 16 0.0000 +
48 42.8 43 42 —-52 0.414 75.2033 48.6415 0.0000 +
65 60.6 60 60 —4.4 0.5071 131.9478 33.6056  0.0000 +
51 46.9333 47 47 —4.0667 0.4577 201.2292 344086 0.0000 +
46 45.5333 46 45 —0.4667 0.5164 172.6809 35 0.0016  +
63 59.7333 60 59 —3.2667 0.7037 288.4226 17.9781 0.0000 +

Here, Difference = MMAS(Avg.) — Greedy. Best and Worst report the maximum and minimum partition size among 15 runs using
MMAS

Table 4 Comparison between Greedy approach [6] and MAX-MIN on random DNA sequences (Group 2, [201-400] bps)

Greedy MMAS Worst  Best  Difference  SD (MMAS)  Time (s) (MMAS) tstat p value  Significance
119 113.9333 116 111 —=5.0667 1.3345 1534.1015 14.7042  0.0000 +
122 118.9333 121 117 —3.0667 0.9612 1683.1146 12.3572  0.0000 +
114 112.5333 114 111 —1.4667 0.8338 1398.5315 6.8126  0.0000 +
116 116.4 117 115 0.4 0.7368 1739.3478 —2.1026  0.0446 —
135 132.2 135 130 -2.8 1.3202 1814.7264 8.2143  0.0000 +
108 106.0667 107 105 —1.9333 0.8837 1480.2378 8.4731  0.0000 +
108 98.4 101 9%  —9.6 1.2421 1295.2485 29.9333  0.0000 +
123 118.4 120 117 —4.6 0.7368 1125.2353 24.1802  0.0000 +
124 119.4667 121 117 —4.5333 1.0601 1044.4141 16.5622  0.0000 +
105 101.8667 103 101 —3.1333 0.7432 1360.1529 16.328 0.0000 +

Here, Difference = MMAS(Avg.) — Greedy. Best and Worst report the maximum and minimum partition size among 15 runs using
MMAS

5.3 Results and Analysis

We have compared our approach with the greedy algorithm of Chrobak [6] because none of the other algorithms
in the literature are for general MCSP: each of the other approximation algorithms put some restrictions on the
parameters. As it is expected the greedy algorithm runs very fast. All of the results by greedy algorithm presented
in this paper outputs within 2 min.

5.3.1 Random DNA Sequence

Tables 3, 4 and 5 present the comparison between our approach and the greedy approach [6] for the random DNA
sequences. For a particular DNA sequence, the experiment was run 15 times and the average result is reported. The
first column under any group reports the partition size computed by the greedy approach, the second column is the
average partition size found by MMAS, the third and fourth column report the worst and best results among 15 runs,
the fifth column represents the difference between the two approaches. A positive (negative) difference indicates
that the greedy result is better (worse) than the MMAS result by that amount. The sixth column reports the standard
deviation of 15 runs of MMAS, the seventh column is the average time in second by which the reported partition size
is achieved. The first 3 columns summarize the t-statistic result for greedy versus MMAS. The first column reports
the t-value of two sample t-test. A positive t-value indicate significant improvement. The second column presents
the p value. A lower p value represent higher significant improvement and the third column reports whether the null
hypothesis is rejected or accepted. Here the null hypothesis is that the two random populations (partition sizes from
greedy and MMAS) have equal means. We have used +, —, & to denote improvement, deterioration and almost
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Table S Comparison between Greedy approach [6] and MAX-MIN on random DNA sequences (Group 3, [401-600] bps)

Greedy MMAS Worst  Best  Difference ~ SD (MMAS)  Time (s) (MMAS) tstat p value  Significance
182 179.9333 181 177 —2.0667 1.7099 1773.0398 4.6810  0.0001 +
175 176.2000 177 175 1.2000 0.8619 3966.8293 —5.3923  0.0000 —
196 187.8667 189 187  —8.1333 0.7432 1589.2953 42.3833  0.0000 +
192 184.2667 185 184  —7.7333 0.4577 2431.1580 65.4328  0.0000 +
176 171.5333 173 171 —4.4667 0.9155 1224.8943 18.8965  0.0000 +
170 163.4667 165 160  —6.5333 1.8465 1826.1438 13.7036  0.0000 +
173 168.4667 170 167  —4.5333 1.1872 1802.1655 14.7886  0.0000 +
185 176.3333 177 175  —8.6667 0.8165 1838.5603 41.1096  0.0000 +
174 172.8000 175 172 —1.2000 1.5675 4897.4688 2.9649  0.0061 +
171 167.2000 168 167  —3.8000 0.5606 1886.2098 26.2523  0.0000 +

Here, Difference = MMAS(Avg.) — Greedy. Best and Worst report the maximum and minimum partition size among 15 runs using
MMAS

Table 6 Comparison between MMAS with and without dynamic heuristic on random dna sequence

Group 1 (200 bps) Group 2 (400 bps) Group 3 (600 bps)
MMAS MMAS Difference MMAS MMAS Difference MMAS MMAS Difference
(w/o heuristic) (w/o heuristic) (w/o heuristic)

42.7500 43.2500 0.5000 114.2500 115.5000 1.2500 180.0000 183.2500 3.2500
51.5000 50.7500 —0.7500 119.0000 121.0000 2.0000 176.2500 183.2500 7.0000
56.7500 56.5000 —0.2500 112.2500 113.5000 1.2500 188.0000 193.7500 5.7500
43.0000 44.0000 1.0000 116.2500  120.5000 4.2500 184.2500 189.2500 5.0000
43.0000 42.7500 —0.2500 132.2500 134.0000 1.7500 171.7500  173.5000 1.7500
422500 42.5000 0.2500 105.5000 107.7500 2.2500 163.2500 168.0000 4.7500
60.0000 60.5000 0.5000 99.0000  99.7500 0.7500 168.5000 170.5000 2.0000
47.0000 47.5000 0.5000 118.0000 121.7500 3.7500 176.2500 178.7500 2.5000
45.7500  46.0000 0.2500 119.5000 120.7500 1.2500 172.7500  179.2500 6.5000
59.2500 61.5000 2.2500 101.7500 103.7500 2.0000 167.2500 172.2500 5.0000

equal respectively. According to t-statistic value with 5% significance value we have found better solution in 28
cases for MMAS. For the other 2 case we got worse result in 5% significance level.

5.3.2 Effects of Dynamic Heuristics

In Sect. 4.2.2, we discussed the dynamic heuristic we employ in our algorithm. We conducted experiments to check
and verify the effect of this dynamic heuristic. We conducted experiments with two versions of our algorithm—with
and without applying the dynamic heuristic. The effect is presented in Table 6, where for each group the average
partition size with dynamic heuristic and without dynamic heuristic is reported. The positive difference depicts the
improvement using dynamic heuristic. Out of 30 cases we found positive differences on 27 cases. This clearly shows
the significant improvement using dynamic heuristics. It can also be observed that with the increase in length, the
positive differences are increased. Figures 2, 3, and 4 show the case by case results. The blue bars represent the
partition size using dynamic heuristic and the red bars represent the partition size without the dynamic heuristic.

5.3.3 Real Gene Sequence

Table 7 shows the minimum common partition size found by our approach and the greedy approach for the real
gene sequences. Out of 15 cases positive improvement is found in 10 cases in 5% significance level.
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Fig. 3 Comparison between MMAS with and without dynamic heuristic (Group 2)
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Table 7 Comparison between Greedy approach [6] and MMAS on real gene sequence

Greedy MMAS Worst  Best Difference SD (MMAS) Time (s) (MMAS) tstat p value  Significance
95 87.66666667 88 87 —7.333333333  0.487950036  863.8083333 58.2065  0.0000 +
161 156.3333333 162 154 —4.666666667  2.350278606 1748.34 7.6901 0.0000 +
121 117.0666667 118 116 —3.933333333  (0.883715102 1823.4922 17.2383  0.0000 +
173 164.8666667 167 163 —8.133333333 1.187233679 1823.012533 26.5325  0.0000 +
172 170.3333 172 169 1.2 1.207121724  2210.153533 3.8501 0.0006 +
153 146 148 143 -7 1.309307341 1953.838267 20.7063  0.0000 +
140 141 142 140 1 0.755928946  2439.0346 —5.1235  0.0000 —
134 133.1333333 136 130  —0.866666667 1.807392228 1406.804533 1.8571 0.0738 =~
149 147.5333333 150 145 —1.466666667  1.505545305 2547.519267 3.7730 0.0008 +
151 150.5333333 152 148 —0.466666667 1.597617273 1619.6364 1.1313 0.2675 =~
126 125 127 123 —1 1 1873.3868 3.8730 0.0006 +
143 139.1333333 141 137 —3.866666667 1.245945806  2473.249067 12.0194  0.0000 +
180 181.5333333 184 179 1.533333333 1.35576371 2931.665333 —4.3802 0.0002 —
152 149.3333333 151 147  —2.666666667 1.290994449  2224.403733 8.0000 0.0000 +
157 161.6 164 160 4.6 1.242118007 1739.612133 —14.3430 0.0000 —

Here, Difference = MMAS(Avg.) — Greedy. Best and Worst report the maximum and minimum partition size among 15 runs using
MMAS

6 Conclusion

The Minimum Common String Partition problem has important applications in Computational Biology. In this
paper, we have described a metaheuristic approach to solve the problem. We have used static and dynamic heuristic
information in this approach with intelligent positioning. The simulation is conducted on random DNA sequences
and real gene sequences. The results are significantly better than the previous results. The t-test result also shows
significant improvement. As future works other metaheuristic techniques may be applied to present better solutions
to the problem.
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